Zander, R.H. 2014. Classical determination of monophyly, exemplified with Didymodon s. lat. (Bryophyta). Part 2 of 3,
concepts. Phytoneuron 2014-79: 1-23. Published 6 August 2014. ISSN 2153 733X

CLASSICAL DETERMINATION OF MONOPHYLY,
EXEMPLIFIED WITH DIDYMODON S. LAT. (BRYOPHYTA).
PART 2 OF 3, CONCEPTS

RICHARD H. ZANDER
Missouri Botanical Garden
P.O. Box 299
St. Louis, Missouri 63166
richard.zander@mobot.org

ABSTRACT

Classical systematists infer evolutionary monophyly by usingscto adaptive or relatively
neutral transformative radiation. If such clues ara ¢twgarithmic scale they may be added to yield a
probability for direction of evolution of one taxon to anoth8uch logarithmic clues are the decibans
used by World War 1l code breakers in England. For a grbapsformative traits are those
convergent among disparate taxonomic groups, while conservaditgedr trait combinations occur
in multiple species and environments. Stem-based evolutiorey caulograms) are generated by
models of serial evolutionary change. Direction of macroevolatiotransformation on a caulogram
is determined by general morphological cladogram position, anxtimam Bayes factor or deciban
differential except when an intermediate taxon may bpgs®d, either from the extant set of terminal
taxa or as an unknown shared ancestor that minimizes Bagter differences.

First, reassurance. This paper is mainly intendedalémsical taxonomists or the interested
student. It attempts to explain what classical taxonsnst intuitively to generate evolutionary
classifications. All relevant mathematics and staisare simple and here thoroughly explained.
Formalization in this paper means determining the statistic logical basis for organizing related
species according to increasing derivation away from s@amieat apparently ancestral species. This
paper is not primarily phylogenetic in that identificationsbred homologous traits is only part of
the method. This is because adaptive or relatively neudiral,ar unique, specialized, or otherwise
divergent traits are also examined and evaluated in cdssaxonomy to create predictive
classifications. Suggestions are made here as to exactlwéase clues to direction of evolution in
the taxonomic analytic and synthetic process. Prediction in emaduti systematics involves
placement in an evolutionary diagram that shows both slareestry and serial macroevolutionary
derivation.

Second, definitions. Some terms appropriate for modern evolutieyatematics (Zander
2013) need a short explanation because of a different mainnge or because they are new.

* Ancestorin the present context is used for a taxon, as in “tradégaxon,” not an individual.

» Bayes’' Formulais a simple statistical method of updating a previoustepied chance of
something being true in light of additional information goovide a new (“posterior”)
probability of it being true. Sequential Bayes analysiply uses a number of sets of data,
one after the other, to continually update the degree di &bbut something (such as a
process in nature).

» Cladeis a group consisting of an ancestor and all its descendam it is thus indicative of
monophyly, but see Figs. 1, 2, 3 and 4.

» Closed causal groumeans that if one relationship is true between two eleanémen the
relationships of all the other elements are immediatelyak That is, if one and only one
species in a genus or infra group is determined to be ttestaal taxon for another in that
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group, all the other species of the group must be also destenésther immediate or
secondarily, assuming again that this group has only omstaacspecies.

+ Dissilient genugefers to a group with a single generalized species avitloud of clearly
derived species associated with it. The derived spegcreanore similar to the ancestral
species than they are to each other. Some derivecsg@ups sensu Zander 2013) may be
S0 specialized as to appear to be dead ends in evolution otffels may prove advanced but
generalist, capable of generating a number of specializet/ed species of their own and
thus found a new genus.

» Heterophylyis either phylogenetic paraphyly or polyphyly, with the same takstant on a
molecular cladogram and no other evidence of differentrodgiconvergence. Heterophyly
implies that intermediate cladogram nodes are of tha¢ saxon.

* Heuristicis a short-cut or rule-of-thumb that provides an approxnsatswer sufficiently
exact for everyday purposes.

* Macroevolutionconcerns taxa generating taxa, serially. This may beatraged with a
caulogram or stem-tree of both serial and branching relatigsshi

» Superoptimizatioris the process of intelligently assigning names to cladogramsnede
usually these are the names of exemplars or terminal @##rwise one may create a fully
natural key (see example by Zander 2013: 80) involving such names, which may be
holochotomous (serial/nested, one-branched), dichotomous, or polychoto@oasmonly,
information that provides clues to direction of evolutismot phylogenetically informative
(i.e., is not about shared ancestors).

Monophyly is determined by both shared ancestors and serialerivation of one taxon
from another. Determination of monophyly through cladistic principles Ihesn the object of thirty
years of Hennigian phylogenetic analysis (Farris 2012; FetarZ)01; Pennisi 2003; Rieppel 2006;
Vernon 1993; Williams 2012). Significant changes based on suchbleavemade in classifications
and in the way evolution is modeled. | have pointed out (Za2d&B) that phylogenetics cannot
alone determine monophyly to any useful degree of accuracys iFldue toapophenia seeing
patterns in random data. In morphological cladograms, railtpscendants from one ancestral
taxon may have some parallel traits, creating false synaypdmes, while reversals force a
descendant lower in the cladogram. All this is due tddheexpressed traits involved in speciation
in any one part of a cladogram. In molecular studies, randovival of otherwise paraphyletic or
phylogenetically polyphyletic molecular strains of the samestnal taxon confounds interpretation
of branch order of taxa. Non-phylogenetic information carecophylogenetic apophenia to a large
extent.

First, ask yourself if any of the taxa in a group qualifyas ancestral to some or all of the
rest of the taxa, ignoring the possibly misdirective clamgram. Divide your species into group of
one potentially ancestral species and its associatededespecies. This may seem foreign to
students used to cladistic thought, i.e., “tree thinkibg{ one may imagine purposefully identifying
a set of multifurcations. The Hennigian principle thaaiy three taxa of the same rank two are more
closely related fails when the progenitor of both survivits expressed traits in stasis. A way to test
this principle is to ask oneself if the group being studieghsily conceived as having one (or more)
generalist species closely associated with a cloudeofed species more similar to the generalist
species than to each other. If such multifurcationseea as fundamental, then cladistic analysis is
inappropriate, but evolutionary analysis remains possibldatifRe stasis of the progenitor taxon is
theoretically expected when the progenitor population is margjed than that of the descendants, in
which case reduced rate of change by differential swangdimgutations can occur or there may be
strong stabilizing selection (Haller & Hendry 2013; Pearetaal. 2007; but see Peterson et al. 1999).
A recent, detailed, independent condemnation of Hennigianafsmm was presented by Cavalier-
Smith (2010).
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Persistent molecular strains are implied by phylogeneti paraphyly. Molecular
systematics assumes that molecular strains must yudekielop into new species when isolated. On
the other hand, because non-coding and trivial genetic mutatons and are fixed in both time and
space, molecular strains are doubtless common. Isolatéch@éror space or both) molecular strains
of the same taxon may diverge with continued mutation of nomgddiits but without species level
change in expressed traits. Abundant molecular paraphyladograms of published phylogenetic
papers demonstrates that surviving molecular strains ofah® taxon may occur both before and
after generation of one or more descendant species diffieriegpressed traits. Extinction of some
molecular strains and survival of others in the samentaxplies that molecular cladogram nodes
cannot be named with surety (Zander 2013: 51). In additiene tis lumping of taxa embedded in
other taxa of the same rank in both morphological and maleeualyses, as “strict phylogenetic
monophyly.” Thus, monophyly is poorly discerned because brartgr of taxa at any rank can be
dubious. Although Mooi and Gill (2010) have contributed a reacstailed, independent criticism of
molecular systematics along similar lines, they make tletake of assuming that “sequences of
DNA and RNA are simply morphology writ small.” The mairoblem is the false assignment of
each molecular strain to separate taxa. There may Iog pwrallel molecular strains somewhat
distant on a cladogram because some have speciated, awydomshese strains are extinct or
unsampled.

Some phylogenetic methods are informative of evolutionarynonophyly. Certain
methods commonly used in phylogenetic analysis are acceptabigormative of serial ancestor-
descendant relationships. Morphologically based cladistitysis is a cluster analysis based on trait
transformations, and as such has general utility, thongteti by the stochastically based resolution
of many groups of three or more species (or higher taiahich only one is surviving progenitor.
Taxa in short or unitary lineages at the base of cladogmamg be either advanced but with
intermediate taxa extinct, or primitive (similar to amti progenitors); but, if two or more such basal
taxa are similar in morphology and also in different cdadeeir basal propinquity implies a primitive
status relative to the taxa in the remainder of the clado(ander 2013: 104, 165). Other than this
information, a process of naming each node must be effquesimony through superoptimization)
to collapse the OTU'’s into coherent progenitor-descendanpgri@ander 2013: 75).

Heterophyly in molecular cladograms is informative Molecular analysis does reveal
branching order of the molecular strains represented by pdaesmbecause the molecular strains
studied apparently do split in a dichotomous fashion and aelleapected (or hoped) to have
somewhat the same rates of mutation of tracking DNA ba®ecause extinction or other non-
sampling of molecular strains masks true progenitor-descemd&itonships, the cladogram is
restricted to branching order of the strains studied, wimay grossly misrepresent species
relationships. On the other hand, cladogram branchesagistf the same taxon that are distant on
a cladogram do imply that the different taxa branching efiveen them are descendants of a deep
progenitor of the taxon to which the distant strains belonghis heterophyly (paraphyly or
phylogenetic polyphyly) is then informative of taxa that @mea serial ancestor-descendant
relationship (Zander 2008) and do indicate what evolutionary mine¢tepresented by changed
expressed traits) that transformation took. A secongeval molecular systematics is when two taxa
are farther apart on a gene tree than expected bybjsossiure informative heterophyly, such as
strains of two species or two genera surprisingly occumnirigro different families, at which time it
may be concluded that there is no deep ancestral conneutibthe two taxa are rightly separated.
Using molecular heterophyly in determining order of serttransformation is discussed in detalil
by Zander (2008, 2010a).

There are underlying bases for systematic analysis in addin to shared ancestry
Monophyly in classical systematics can be diagrammed asaulogram (Besseyan cactus or
caulogram) in which all parts of the evolutionary treeramed, if possible. The exception is when
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two closely related taxa are each apparently charaeteby equally advanced and specialized traits,
and a shared ancestor may be postulated. The postslageed ancestor minimizes credulity
necessary for traits having apparent Dollo irreversybdss a group (i.e., macroevolutionarily, at the
taxon level) (Atkinson et al. 2014; Gould 2002; Grant 1985: 329; Levit®88: 217). This paper is
an attempt to formalize that process in classicaksyatics of intellectually and intuitively generating
a caulogram from experiential data informed by protessed theory. Formalization to reveal
underlying physical and statistical bases for systematisidecis important to justify credibility in
scientific study using heuristics as opposed to the mechaai@aiomy associated with structuralism
in phylogenetics (Zander 2010b). Of course, following Giere (2006);nthtens of reference and
truth” developed for mathematics and physics may not benhevalid or practical guideposts to
understanding a complex universe, but they suffice for this study.

Taxa evolve, not just traits Many phylogenetic papers have deprecated standard
evolutionary theory as contrary to cladistic results. Stadresults are obtained by mapping of trait
transformations on a morphological or molecular cladogrdnat, driticism is based the Hennigian
fallacy, which is contrary to well-established theorp@Ber 1989: 346; Mayr 1981). This is in part
because an algorithm expecting two of three taxa to be nuselygrelated will in fact generate a
fully resolved diagram by misinterpreting randomly congrueatesthanges as synapomorphies or a
molecular strain as the complete taxon, when a multifiarcddetter represents macroevolutionary
transformations. In fact, the opposite may be expedelet so in the majority of cases, that
immediate descendants, if two or more, will be more similar o pinegenitor than to each other
This last is a clear heuristic that | believe is muabdus classical systematics. It is similar to the K
statistic of Blomberg et al. (2003), but does not involve a uneasent of phylogenetic signal. Sober
(2008: 264) discussed at length the topic of shared ancesan,imvoking the Bayes formula to
distinguish which hypothesis of Hennigian-style shared amycissmore probable, but his rationale is
throughout limited by a reliance on the Hennigian two-otthofe principle.

Together with selected information from molecular andphological cladistics, the modern
heuristics of classical systematics can devise an atilepttaulogram that represents serial
macroevolutionary transformations of monophyly. With fore&lon, the heuristics can be put on a
mathematical and statistical methodological basis.

SERIAL MONOPHYLY VERSUS CLADES

Radiative evolution is the key to recognition of transformabn of one taxon to another
When asking a classical taxonomist to estimate monophyly ofug gnowhich he or she is expert,
one can expect that taxonomist to sort and polarize theitéxasuccessive but also commonly
branching groups each modified away from some central settirés identifiable as “general” or
“primitive” for all taxa. Then each sub-group is evaluatecagkind of radiant circle away from a
generalized ancestral taxon towards a set of often higgidyptive or at least neutral but unique
descendants, representing radiative evolution into new envirgsjreentrifugal from a generalized
ancestral taxon. The result is a caulogram, or commagnaBesseyan cactus. This sort of analysis
is often done intuitively as a function of a mysteriouslifgoof taxonomists called “expertise,” not
presently duplicable in software. Is there an intall@ctstructure to taxonomic expertise in
determining serial monophyly? To what extent is experiemdend of frequentist statistic or
generative of Bayesian expectation?

The classical systematist uses clues to both shared andiaerelationships. Phylo-
genetics has formalized the grouping of taxa using clusterietipads based on successive trait
transformations, resulting in dichotomous trees of terirasea quite like standard cluster analysis
but with more information beyond raw or massaged similafsch node in a cladogram represents
the beginning of a supposed monophyletic group, calddde Tree-thinking methods are criticized
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at length in “Framework for Post-Phylogenetic Systemfatigander 2013), and a caulistic (stem-
thinking) alternative to cladistics is there proposetie Tise of heuristics in classical systematics was
treated (Zander 2013), but only one aspect v@snalized (i.e., given a clear physical or
mathematical structure or explanation), namely, the gemma&an basis for the paradigm (a—)b—c(-
d) in descriptive measurements.

(1) Macroevolutionary progression

&

time

(2) Two of many possible morphological trees based on (1)
A+A" B Cc D D B A+A C

Fully resolved
through reversal
and chance trait duplication

A multifurcation

(3) Molecular tree based on (1)
A D Cc B A'=X

Figure 1. Comparison of contrived trees of the same evolutioseepario.(1) Macroevolutionary progression
of three derived species B, C and D, in that order, fromiep@. Species A has previously split into two
isolated but morphologically static and identical popatetj A and A (2) Cladograms of parsimonious
analysis of morphological traits. Left is a multifation. Right is a fully resolved morphological cladogram
with chance duplication of traits in B and D, and revergaltaait in C. (3) Molecular tree showing A as
terminal having generated B, C and D in the past whidf iisutating but Ais treated as a new cryptic species
“X".

Cladistic analysis is accepted as valuable for prelingicéustering of taxa, but it must be
carefully evaluated because the central Hennigian thesiotrevery three taxa twmustbe more
closely related can be quite wrong for estimated oofléranch splitting. In the present paper, the
ability of classical systematists to evaluate evolutipnamonophyly intuitively is examined and
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formalized as actually a combination of cladistic-styl@leation of shared conservative tracking
traits and a simple sequential Bayes analysis (exgdaiby Kachiashvili 2012) done through
assignment of coarse likelihoods as clues in the manneodfW/ar Two code breakers.

{1) One molecular strain of A extinct Molecular cladogram of (1)
» C D B A
@
E
Molecular cladogram of {2)
1 A D C B
@
E
Molecular cladogram of (3)
Cc D B
@
E
et

{(4) Correct analysis of extant B, Cand D
in (3) with A entirely extinct (or unsampled}

Figure 2. Effect of extinction (or non-sampling) ofleaular strains of ancestral speci€$) A (one of the
ancestral molecular strains) is missing, molecular g¢jaado at right has species A bas@) A’ (the other
ancestral strain) is missing, species A is termi(2).Both molecular strains of species A are missing, and
molecular cladogram is restricted to B, D, and(®) This is the correct caulogram for the extinct araemsbd
its descendants (3).

| LLUSTRATED COMPARISON OF CAULOGRAMS AND CLADOGRAMS

It is untrue that two of every three taxa must be more clady related After thirty years
of viewing evolutionary relationships diagrammed with cladoathe reader may find difficulty
assimilating a way of presenting both serial and lagaralutionary relationships, the caulogram (also
known as the Besseyan or Bessey's cactus). The restriofi cladograms to showing shared
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ancestry alone can bias the presentation of informatiovarious ways. Such differences need
explication, which is given here in a series of illustrag (Figs. 1-4).

Figure 1 is an exemplary analysis comparing various eattrees of the same evolutionary
scenario.

Figure 1(1): macroevolutionary progression of three derived spgciésand D, in
that order, from species A. The last previously splito inwo isolated but
morphologically static populations, A and. Alote the time bar on the right. This is a
caulogram.

Figure 1(2): shows cladograms of parsimonious analysis of magbal traits.
Left is a multifurcation as expected if traits of dedvepecies did not reverse or
duplicate. A and Aare correctly treated as the same. On right is lg fekolved
morphological cladogram with chance duplication of traitB iand D, and reversal of a
trait in C. All three species, B, C and D, remdarived from A, however, no matter
where on the cladogram they appear.

Figure 1(3): presents a molecular tree showing A as terrmaahg generated B,
C and D in the past while itself mutating (a “self-nestireg”), but A is treated by
molecular phylogeneticists as a new cryptic species ‘Although (2) and (3) show
cladistic (lateral) relationships they are wrong becausedhal relationship is ignored.
Note no time bars for (2) and (3). The macroevolutionarydtarfor all three, (1), (2)
and (3), isA, A) >'B, °C, *D.

Figure 2 shows effect of extinction (or non-sampling) of mobecstrains of ancestral
species.

Figure 2(1): A (an ancestral molecular strain) to besmg and molecular
cladogram at left has species A basal.

Figure 2(2): A (non-ancestral strain) is missing, species A is terimiGaven that
only one molecular strain of species A is known, the macroevohriidormula isA >
!B, 2C, D for both (1) and (2) yet the molecular cladograms areomgruent.

Figure 2(3): Both molecular strains of species A aresing, and the molecular
cladogram is restricted to B, D, and D. It is fullgsolved although from other
information B, C and D are apparently equally derived fromesanmknown ancestral
species.

Figure 2(4): This is the correct caulogram for (3). Onhewthere is no known
candidate ancestral species for two or more equallyetbispecies can an unknown
shared ancestor be postulated.

Figure 3 asks the question that given that we do not knowrtiee macroevolutionary
relationships, what is the best we can do in determiningbramter? This figure shows what we can
infer from minimal data on a molecular tree. Remembat the ancestral nature of A and derived
natures of B and C are determined in large part in supeiaption by non-phylogenetic (non-shared
ancestry) information. Even this basic information, howeigenot available from the phylogenetic
molecular analysis obidymodons.lat. by Werner et al. (2005) because the segregate geeera a
scattered and in very short branches (Zander 2013: 89-90). Buwhifirformation were available
for the contrived example in Fig. 3, then:
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Figure 3(1): Heterophyly implies that B and C are deriveth species A, and the
more terminal of the two is last in order of speciatig, (A, A") >'C, °B.

Figure 3(2): If a species judged ancestral by non-phylogeneticmatmn is
terminal, species clearly derived from it are in oréay, A > Ic,B.

Figure 3(3): If only two derived species are more termthah the ancestral
species, no order is discoverable because they are preasrdister groups. Thu&,>
B, C.

Figure 3(4):But if three or more derived species are more termihallowermost
are in discernable order, e.4.> 'D, °E, °F, “(C, D).

Molecular trees with ancestral taxon A and derived species

A B C Al
A B c B c A
(1 (2) (3)
known heterophyly ancestral taxon terminal ancestral taxon not terminal
A>'c’B A>'c’B A>B,C
branch order inferable branch order inferable branch order not inferable
B Cc F E D A
(4)

ancestral taxon basal, 5 derived
A > 'D,’E,°F,"(B, )

branch order partially inferable

Figure 3. Inference from minimal data on a molecular tréB8.Heterophyly implies that B and C are derived
from species A, and the more terminal of the two isitaerder of speciation, e.¢A, A") >'C,B. (2)Ifa
species judged ancestral by non-phylogenetic informatitamriznal, species clearly derived from it by non-
phylogenetic information are in ordef3) If only two derived species are more terminal than teestral
species, no order is discoverable because they aenpedss sister group§4) But if three or more clearly
derived species are more terminal, the lowermoshadescernable order.



Zander: Classical determination of monophyly, concepts 9

Figure 4 explains how the principle of strict phylogenetic monopladgdgs not reflect
generation of a taxon of higher rank from another. Genusationx&onme, is generation of a new
genus from a species in another genus, or just from the g#mers if which species is ancestral
cannot be readily determined. Can you see the two ganétg.i4? Both species A and B generate
derived species based on superoptimization informatiomi@wvad) ancestral and derived species. B,
like A, is identifiable as central to a particular digsit (exploding) genus concept. The
macroevolutionary formula of this caulogram4s @) > (B > 'E, %F, °G), °C, °D. In this contrived
example, we know both serial evolutionary direction and thechrarder. In practice, the formula is
usually incomplete.

"Genusation™

time

Figure 4. Genusation is generation of a new genus from a specésther genus. Can you see the two genera
in Fig. 4? B, like A, is identifiable as a species a@rtty a particular dissilient (exploding) genus concept.

CONVERGENCE ANALYSIS

Evolutionary stasis of ancestral taxa does not mean they dootn speciate That
progenitor-descendant series exist and are often abundaigmsnstrable in the evolutionary
literature, and in the associated phenomenon of phylogenetic plraphoth morphological and
molecular analyses. If any population is split and igdlah two or more unequal parts (e.g.,
peripatric speciation, see Futuyma 2009: 484), including founder egsmstic stability through
time is expected to be greater in the larger portitinis commonly acknowledged that allopatric
speciation (Futuyma 2009: 472) is quite common or even more comamsytmpatric (Barraclough
& Nee 2001; Mayr 1954, 2001). Species may remain static fiiomsi of years, whether of large
distribution or not, but smaller or founder isolates (includiyigpatric isolates) may speciate rapidly,
escaping the homogenizing effects of gene flow, and more ragidting in traits or changing
through selection (Via 2001). There is great evidence fresilfstudies that stasis in expressed traits
(Haller & Hendry 2013) associated with punctuated evolutiamommon (Benton & Pearson 2001).
Surviving progenitor species with two or more immediate @led@nt species are to be expected.

Recognition of the difference between generalized aestral taxa and specialized
descendant taxa is often easy for an expert in the group The phylogenetically assumed
pseudoextinction (rapid post-speciation anagenetic change parthef a progenitor species) is thus
theoretically uncommon. Figure 2(4) shows similar branchioign fan unknown shared ancestor but
the ancestor may be pseudoextinct or simply unsampledevelutionary science to advance, theory
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is used to create models to explain process-wise therships of organisms. By evaluating sets of
closely related species, experienced taxonomists canyugietify a surviving progenitor from its
surviving descendants by reference to rules of thumb (hesjisthat are widely accepted.
Convergence analysis simply the heuristic that if a trait (or set ofitsa is scattered about an
accepted classification, these are convergent (or paifalfeim the same ancestral taxon), and are
therefore may be either radiatively adaptive or areadtlan element in transformation away from a
generalized species.

There are well-established clues to direction of evdionary radiation. Progenitors are
taken here to generally have comparatively broad distribut@tsr in older habitats, occupy less
specialized niches, are morphologically generalized, havexgiiessed features (are not much
reduced), are polymorphic with many subspecies, varietiegjplais or cytotypes, have a distinctive
morphological trait combination that may be variously modifi reduced, and lack asexual
reproduction as primary. In the present paper the likeliho@dslaes about direction of evolutionary
transformation along the lines delineated by Grant (1948)p&in (1953) and Mayr (1954) in the
context of the New Synthesis, and of others who have discaslsgdive trends and orientations in
detail (e.g., Futuyma 2009: 595; Gauvrilets & Vose 2005; Seehd¥#8). According to Schluter
(2000: 2), “Adaptive radiation is the evolution of ecological and plypmotiversity within a rapidly
multiplying lineage. It occurs when a single ancestor divargesa host of species that use a variety
of environments and that differ in traits used to explois¢henvironments.” It is possible that some
new traits associated with radiation are not adaptivaeg@erger 1991; Gould & Lewontin 1979;
Rundel & Price 2009), so one should identify putative descendasimply transformative radiation,
including both changes associated with adaptive radiafidmew neutral traits whether refractory to
selective pressures or not.

Convergence is a clue to adaptability of traits Neutral morphological traits are only
neutral as evolutionarily “local” conservative traits. @wding to Simpson (1953: 174, 179)
conservative traits almost always are have adaptive isignife for higher categories. Adaptive
traits, if identifiable, might thus be informative of @ition of macroevolution. They converge across
taxonomic boundaries as different taxa adapt to the sawlationary pressures. Conservative traits
do not converge except at high taxonomic levels when associdgbteghyletic constraint, and are not
immediately informative at the species level. Convergemedysis distinguishes adaptive from
conservative traits and weights adaptive traits by leeloafidence in distinguishing direction of
evolution.

There are two principles of convergence analysis in thepresper.

First is thatfor any closely related group, taxa with advanced speciakz traits have a more
generalized taxon as shared ancestorThus, a possible dead end will have an entrance somewher
Such a generalized ancestral taxon may be extinct gfysimknown but it can be “described” (and
searched for) as at least having the common traits of the@mem species. Given this method of
analysis, monophyly with named or at least describablesaatéaxa is possible. This can replace
the “clade” of phylogenetics in which every node is necegsamilunnamed and unnamable ancestor
of ultimately all distal branches, which is palpably incort@etause many nodes are easily named
and many of these are of the same taxon (Zander 2008).

Second post-dissilience descendant-descendant transformation rees with no reversals are

preferred. That is, after an ancestral taxon has generated a skisoéndants, those descendants
may be expected to telescope outwards (nest) by genedasogndants of their own with increasing
specializations. Sometimes, a new generalized taxdmgber rank may be a descendant (Fig. 4).
Takhtajan (1997: 4) emphasizes this point: “Every newesta evolution, and consequently every
new taxon, differs from the ancestral taxon by an acquisitti@ome new, derived characters. The
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ancestral taxon, on the other hand, will differ from itscg@dants by the absence of these derived
characters.” The simplest case is when no reversalsreapgred and the putative secondary
descendant is simply a sub-set of its immediate seconganlyenitor species (see discussion of
Vinealobryum brachyphyllurandV. nevadenseand of Geheebia fallax, G. ferrugine&. maxima,
andG. giganteabelow).

Conservative traits may be weighted by the number of diérent habitats they tolerate
The transformation from one genus to another theoreticallgives fixation of aset of different
conservative traits in the progenitor that occur in a midiiplof somewhat different environments.
Phyletic constraint (restriction of a taxon to environmequsvivable with that set of conservative
traits) both restrains the increase in number of coasee traits and the survival of organisms
without the full complement. Thus, existence of at lea® generalized species in a genus
demonstrates long-term (multiple speciation events) saireivthat conservative trait combination in
the most ideal of environments. Conservative traitssdbd case with non-coding or genetically
trivial DNA bases, can thus be used to track evolution.

Conservative traits are those refractory to selectiecause they are in combination
evolutionarily neutral or neutral enough for that group in itdigaar range of environments given
phylogenetic constraint of other expressed traits. Theydareified as those tolerating a range of
selective regimes. Such can be judged by the number aésp¥@ group in which the traits occur,
given that each species has or probably has a distiranfiajetive range. Thus, cladistic logic works
fine to cluster conservative traits that track evolutiget fails when highly adaptive traits are
automatically assigned synapomorphy status simply becausaghpegr in two or more species that
morphological and ecological evaluation may deem more proladlijlyint descendants of one other
generalized species. The present analysis began withdsstic (Zander 1998, 2001) study of
DidymodonHedw.,a genus of mosses (Bryophyte, Pottiaceae) that used eejghitivwg of traits but
happened to matched past classical groupings (Zander 1993).

Adaptive or transformative radiation is considered adstath view of macroevolutionary
change, is implicit in classical systematics (e.gnegation of a caulogram or Besseyan cactus), and
comprises the data used in classical heuristics relaonghdnophyly. This paper studies the
backbone of those heuristics, namely the mathematical amtiss structure that allows evaluation
of the significance of the data.

The equivalent of Hennigian pseudoextinction is possihlebut probably rare.
Dichogamy (equal splitting and isolation of a progenitor popatmay give rise to two descendants
that gradually diverge. This is equivalent to Hennigiaeugsextinction. Another equivalent is
extinction of ancestral species or those of intermediadephology such that two species are so
different but equally specialized as to be equivocalstimation of a serial transformation series.
Both scenarios must be included in estimation of progedgscendant series and signaled as
involving an unknown shared ancestor, but there should be a pftificoased on process-based
evolutionary theory, not an axiom for reliance on cladspids.

DETECTIVE WORK IN CRYPTANALYSIS

Sequential Bayesian analysis is a powerful taol This paper makes use of sequential
Bayesian analysis. The essence of Bayesian anay®icombine a prio(chance of the hypothesis
given prior knowledge) with a likelihoofthance of the data given the hypothesis) to calculate
the Bayes Formula a posterior probabilfghance of the hypothesis given the data and the prior).
Details of Bayesian analysis as used in phylogenetic sinaly presented well by Sinsheimer et al.
(2003) and by others, and will not be discussed here. Krug@ikd) has recently produced a
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software-oriented (R and BUGS) manual for Bayesian arsakpat is potentially highly flexible
although the de novo programming of a MrBayes equivalent waeutthbnting and superfluous.

Sequential Bayesian analysis was developed by A. Waldthers (Kachiashvili 2012; Wald
1947), and was kept secret by the United States becauseafigsduring World War 2. About the
same time, it was separately developed in Britain byn Alaring, in a somewhat different form.
Again, applications to the British war effort and latiee Cold War kept it secret until about 1980
(Good 1979). It is a form of empiric Bayes (McGrayne 2011: 134, 268)—the posterior
probability that was obtained from the first calculatiorused as the prior for a second Bayesian
calculation with another additional likelihood from additionalaga@nd so on with added data until a
stopping rule is triggered or one runs out of data. A &requation for Bayesian causal induction
involving a stopping rule is given by Bonawitz et al. (2013), budwanhof data, in the present study,
is the limiting feature. The assumption is that the sld@piee distribution curve for the data of each
sequential implementation is the same, i.e., conjugadespiiiicGrayne 2011: 149).

Sequential Bayesian analysis is increasingly usedseijuential sampling, but it may also be
used when dealing with individual “particles” of informatiowhen the data change with time, this
quasi-recursive method is known as Sequential Bayesian ibgdaauritzen 2009) and is used for
control in robotics, speech recognition, political pollinggétrtracking, and steering/control, for
example of large ships, airplanes, and space ships. In taypiidms been examined as a method
for identification of bacteria (Gyllenberg & Koski 2002), ldbat paper is largely of mathematical
proofs of certain very general assumptions. The heuristic fusegoential Bayesan analysis (as
“updating”) in day-to-day human affairs was investigatedbpawitz et al. (2013). They found that
a simple Win-Stay, Lose-Shift sampling algorithm, inichha learner keeps a particular hypothesis
until receiving evidence that is inconsistent with the liypsis, approximates Bayesian inference,
and does so efficiently. Sequential Bayesian analgsiba present paper is suggested as a formal,
previously unrecognized basis for heuristic evaluation of maylgpn classical systematics.

Adding decibans together may be used as a substitute fosing Bayes’ formula Alan
Turing’s work in breaking German war codes during the 1940'<3fdgne 2014: 67) led to his use
of a kind of sequential Bayesian analysis. Given tamputers were then primitive, being hand-
operated, logarithms were extensively relied on. Turinth) ivJ. Good and others in the group of
code breakers at Bletchley Park, used clues, often ltieg,cto narrow down particular settings of the
Enigma machines the Germans used. Statistically, thehayitused was the ban, which indicates
that one hypothesis is 10 times as likely as an alternayppethesis. The basic unit for a clue was the
deciban (abbreviated dB), defined casually as the minimdl deraatifiable as a measure of belief in
a hypothesis, somewhat more precisely as an change imagadfom 1:1 to about 5:4. (Remember
that an odds ratio of, say, 2:1 is actually the fracti@y®here the denominator must be increased by
the value of the numerator. The odds ratio of 1:1 isd@,5:4 is 5/9.)

A deciban is technically 10 times the base 10 log of the odd<)6t1, or a ratio of tenths
of a power of 10 to one. It is a logarithmic unit of proligbihat measures information (or entropy).
It is a decimal digit as opposed to a bit, which is atyimigit. One ban corresponds to about 3.32
bits, and a deciban is about 0.33 bits. A change of 1 dechanges the odds by a factor of
approximately 5:4. A change of 10 decibans changes the oddmtipaof 10, 20 decibans changes
the odds by a factor of 100. Most systematic analysestisicted to a range of 1 to 20 decibans (0.55
to 0.99 probability values), whether given as exact or irdbprobabilities.

Turing and his group found that by combining clues (some in ldtits of a deciban)
enough relevant information could be gathered togethleretk codes. The process was essentially
Bayesian, and can be easily matched using today’s compatat@mveniences (e.g., a spreadsheet as
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discussed below) with sequential Bayes calculation. b, fédne probabilities associated with
decibans are exactly duplicated by sequential Bayes @alys review the equivalencies, adds
ratio of approximately 5:4 is equal to thraction 5/(4+5), and that is the decimal fraction 0.05555...,
an approximation of one deciban. The exact deciban catilati1(®’**1 as odds ratio is equal to
the fraction 16'%(10"'° +1), which is the decimal fraction 0.5573.... With a priol0d&0 and a
likelihood of 13"*%(10"*° +1), the Bayesian posterior probability is the exact samiendeéraction
0.5573.... If one does have posterior probabilities thatdiecpriors that are not 0.50, then convert by
multiplying by the reciprocal of the priors (Kruschke 2011: 253), bhigt is not necessary with
deciban calculations.

Using decibans does not require computersTwo and five decibans add (logarithmically,
as with a slide rule) to seven decibans, and from the fora@t/(10"*° +1) we get the decimal
probability 0.8337...., which can also be read off a clsa¢ Table 1). Bayesian sequential analysis
with a spreadsheet yields the same results, with namplex but more flexible calculation. With a
prior of 0.50 and seven likelihoods of "#8(10"'° +1) each of the seven being analyzed with
sequential Bayes (using each posterior as the pridreoféxt calculation), the same decimal 0.8337
is also obtained. Clearly, using decibans is a shorincBayesian sequential analysis and can have
heuristic value as a simplifying tool.

CLADOGRAM ERROR

The resolution of molecular trees of branch order of @xa is not high even if branch
order of molecular strains is well determined In phylogenetics, each node defines the start of a
clade. Yet in morphological cladograms, chance matching wftragts during parallel speciation
from one ancestral taxon results in false synapomorphies false nodes. In molecular cladograms,
the potential for hidden paraphyly (or heterophyly) causedbgat or unsampled molecular strains,
and for generation of multiple descendants from one ancéstal makes any node uncertain as to
whether or not it is the beginning of a clade.

If any molecular analysis is liable to uncertainty beeaaf¢he above potential problems, one
cannot use details of the analysis for classification mago The branch order resolution of a
molecular cladogram cannot be better than the averag@atistd known heterophyly. One might
expect an average resolution of at least three or four nodegidespread taxa and often up to 10
nodes for certain taxa (e.g@rachyglottis, LigulariasandSenecidn Senecioneae, Asteroideae, Pelser
et al. 2007). This applies to any rank exhibiting paraphylyispegenus, or family. Of course
there is a limit to uncertainty due to expectation dden heterophyly, since one might not expect it
to cross established higher ranks.

If known molecular heterophyly is largely, say, two nodesnadeled in Figure 5, then an
error bar showing this uncertainty might be insertedemth phylogenetically postulated “shared
ancestor.” All postulated shared ancestors are tHeotedl by overlapping error bars, see Fig. 5(1).
Molecular heterophyly as in Fig. 5(2) and superoptimizatsnin Fig. 5(3) largely eliminate
uncertainty due to paraphyly. Note in Fig. 5(3), evenghawdes with known ancestral taxa crowd
the end of the cladogram, the error bars remain and reppaeelictive uncertainty for any new taxa
that might be inserted into the cladogram. Such a proldevhviated if new taxa are inserted into
the equivalent caulogram of Fig. 5(4), which is why caulograame ultimately better than
cladograms.

Why such an involved and complicated introduction? Lakatos (1978) proposed that
research papers do not need a justification of their thealrblsis for each publication in those cases
when a firmly established intra-disciplinary researasgpam is understood. Even if the researcher is
not fully familiar with every theoretical nuance, a papéserving standard protocols indeed
contributes to science. In systematics, for instangaper that is simply a check list of species for
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an area is accepted as part of a 250-year researchaprapcumenting and explaining when
possible the historical biogeography of the earth’s lifehe Present taxonomic paper requires a
detailed theoretical justification, however, because theopppte research program is new, and is, in
Lakatos’ sense, progressive in predicting novel facts. dBesalthough the human brain is slow to
work out complex problems, its own complexity and power canwii#alithat complexity, slowly but
surely.

" all nodes are shared ancestors N molecular heterophyly

_ error bars = 2 nodes

superoptimization caulogram

3 @)

Figure 5. Analysis leading to a caulogram, based omanal portion of a molecular cladogram.
Heterophyletic terminal exemplars (of species B and&)racolor, they are of the same taxon but each distant
by two nodes. (1) Overlapping error bars for all nagleen all are each treated as a shared ancestor. (2)
Molecular heterophyly eliminates much uncertainty by iifigng one taxon giving rise to another. (3)
Superoptimization through identification of ancestor-desagt@gationships on the basis of non-phylogenetic
information reduces uncertainty more. Node 9 in this cgdrexample cannot be eliminated because
exemplar H cannot be easily assigned in this example to ant gxbup, and remains an unknown shared
ancestor. (4) Caulogram showing stem relationships.

METHODS
PROBABILITIES AND SUPEROPTIMIZATION

Simplifying formal estimation of probabilities uses decilans. Probability is here not just
expected intersubjective agreement, but also a measure ahtiolwmore predictive or explanatory
one model is over another. Informally, the probability imbired scientific hypothesis must be
tested by real decisions and their aftermath. Claasiins are the result of series of heuristic
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decisions over time (250 years of Linnaean and 150 of Darwial@momy), much like updating in
sequential analysis. Formalization involves assigning filifoes as measures of expectation on the
basis of theory; these are coarse measures, but noneti@lés®ere” intuition. There are four ways
probability is used in this paper: (1) Sequential Bayesyaisabf “clues” to direction of serial
transformation using decibans and perceived radiativeforamstions is done in much the same spirit
as by code breakers during the Second World War. (2) BagtesSdare used to evaluate competing
hypotheses. (3) Probability that at least one ancestoewmgset transformation is correct (IRCI
formula below) uses the concept of a closed causal poolDg@ban differentials allow distinction
of the two most likely models when the B.F. of each arg e@se. The calculations in this paper use
simple mathematical concepts suitable for traditionaltyimerate taxonomists, and are facilitated by
spreadsheets available online athttp://mwww.mobot.org/plantscience/resbot/evsy/sprsh/> The
spreadsheets can be “unprotected” and modified for usdangi&r numbers of traits and taxa.

Intuitive expert systems can be explained The analysis of serial macroevolutionary
transformations at the taxon level was discussed athdrnygZander (2013). In the present paper, an
expert system is exemplified that attempts to forrealidentify physical and mathematical bases of)
the scientific intuition approach referred to in the @asGestalt or omnispection methods. Two data
sets are gathered for the group studied, one set fordstraits published by Zander (1998), and
another set (see tables in Part 3) for unique and aplyaesitanced traits. The first set is of
homologous traits that may be used in cladistic analysssdcond largely of autapomorphies.

“Superoptimization” means naming cladogram nodes to eliminateinvention of
unknown shared ancestors The deeper a taxon is buried in a rooted cladogram (subtegydedny
nodes) the more likely it is to be advanced in terms chlsieainsformation, but this is usually masked
to a great extent by false resolution due to a methodolagigalrement that of every three taxa, two
are more closely related, resulting in branch ordeedvas chance (parallel) shared traits or reversed
traits. This problem is resolved by “superoptimizationarider 2013: 75), which is the naming,
whenever possible of cladogram nodes. This results in idetiifn of groups of one progenitor
taxon and one or more immediate or secondarily descendant Tdis is usually done informally in
classical taxonomy, through omnispection and reliance s#taf informal heuristics that identify
primitive-advanced transformations along the lines of evolatiptheory.

This has already been done Drdymodonby Zander (2013: 80). That same analysis is
continued in this paper but with formalization of the heuwrisised in superoptimization. The
intuitively superoptimized groups are here re-analyzed bygraag each taxon a set of clues or items
of evidence. A dissilient genus (Zander 2013: 83, 92) is oftely édentified as a group of similar
species with a putative ancestral taxon for the otheriegpeclnasmuch as nature teaches us
taxonomic concepts, there may be other definitions of taxongroips that are equally effective in
prediction when dissilience is not evident. The putative progemitsra maximum of theoretically
primitive (i.e., first of a series) traits vis-a-¥tsse of the other taxa in the group.

One can assign one deciban as minimal clue, or a higheumber of decibans for very
convincing clues With sequential Bayes analysis, with all evidence ¢&ee@s minimal clues (0.56
probability) and assuming an initial 0.50 prior, 13 Bayesiperations (13 clues, that is, 13
likelihoods) are needed to provide minimal scientifically t#8asupport (0.95 or more). A single
0.76 (5 dB) likelihood among the sequence reduces the numbleresfneeded to eight for scientific
reliability. Two 0.76 likelihoods reduces the number of slmeeded to four. Thus, moderately
strong evidence, if convincing, can be quite helpful in suppp#iparticular hypothesis. With strong
evidence, three Bayesian operations at 0.76 (5 dB) likelinaghss a standard scientific minimum
0.95 at 0.97; four at 0.76 likelihood gives 0.99. Thus, three deesmined to be of moderate not
minimal import (0.76) can combine in sequential Bayesyaisa(with an initial 0.50 prior) to yield a
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scientific minimum reliability for whatever hypothesssaxamined, four giving very strong scientific
support. Coarseness in assignment of clues to directioraofoevolutionary transformation aids in
making these studies repeatable, using, say, only odd nsiwib@ecibans (1, 3, 5, 7) as is done here.

Deciban analysis is like using a slide rule Table 1 compares the probabilities of
evolutionary serial transformation using decibans obtainech fnumbers of perceived advanced
transformative traits. The probabilities are given from@®626 dB because negative decibans are
required when evaluating pro and con hypotheses; zero deciba®50 probability. Figure 6
presents a chart of the exact probabilities on the y-amésdacibans on the (logarithmic) x-axis. A
dashed horizontal line is given for 0.95, 0.99, 0.76, 0.56 andpddb@bilities, showing their position
on the asymptote. Their negative values are also givedEdess than zero (i.e., less than 0.50).
One can use this chart for quick estimation of probalsliti&hree clues in a sequential Bayesian
analysis can be read off the 3 dB bar. Two clues of ociale each plus one element of moderate
support of five decibans adds to seven decibans, or 0.833 poptebability for that single analysis
of the probability that a taxon was derived from anotherte W@t this method is similar to the use of
the logarithmic scales on an analog slide rule. Dealing eathplex digital calculation through the
mental analogue of a specialized slide rule may partalhstitute “intuition” in systematics.

100‘ 0.99 .’.'1-4-0. LA A
0.95 - A 20dB

0.90 * 13|dB

0.80 *

0.70 ¢

0.60 ¢

0.56 ¢ 1laB
0.50 { 050 @ 0dB

0.44 ¢ -1dB

0.40 .

0.30

0.24 ¢ -5dB

0.20 .

0.10 . o

0.05 =mmmmmmmmmm b o
20 dB '
0.00 + 3% asemeee? ¢

-26 A7 -7 3 13 23 26
Decibans (dB)

Exact Calculation (= Bayesian Posterior Probabilities)

Figure 6. Chart of probabilities showing decibans enxtfaxis (logarithmic) and exact probabilities on y-axis.
After assigning clues as decibans and adding them, themeahabilities of this form of sequential Bayes
analysis can be read off the y-axis, in the fashica gfde rule.
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Table 1. Decibans (dB) with calculations of probaieii by odds of 18%1, which is the fraction 16° divided

by 10"'°+ 1. Given that decibans are logarithmic, they magduted, e.g., 2 dB plus 3 dB = 5 dB. Deciban
and their exactly equivalent sequential Bayesian probiabilihay be read off this table. Negative dBs are for
contrary hypotheses. Zero dB = 0.500 probability. Agjpnate odds ratios are given. Important mileposts are
bold-faced. First standard deviation = 3 dB; second S13.dB, third S.D. = 26 dB.

dB 1 2 3 4 5 6 7 3 o 10 11 12 13
Prob. 0.557 0613 0666 0715 0.75% 0799 0833 0863 08338 0909 0926 0940 0952
Odds 54 3:2 21 3:2 31 41 b | 6:1 8:1 10:1  25:2 15:1 20:1
dB 14 13 16 17 18 19 20 21 22 23 24 23 26
Prob. 0061 0969 0975 0930 0984 0987 0990 00992 00903 0005 0006 00996 0007

Odds  23:1 30:1 40:1 50:1 60:1 80:1 100:1 1251 1631 2001 2301 3301 400:1

dB -1 -2 -3 4 -5 -5 = -8 - -10 -11 -12 -13
Prob. 0442 0386 0333 0284 0240 0200 0166 0136 0111 0.090 0073 0059 0.047
Odds 4:35 2:3 1:2 2:5 1:3 1:4 1:5 1:6 1:8 1:10 2:23 1:15 1:20

dB -14 -13 -16 -17 -13 -19 -20 =21 -22 -23 -24 -23 -26
Prob. 0.038 0030 0024 0019 0013 0012 0009 0007 0006 0005 0004 0.003 0002
Odds  23:1 1:30 1:40 1:30 1:60 1:80 1:100  1:125 1:143 0 1:200 0 1:230 1:330 1:400

The 95% level of significance does have a good basiSlues can be “added” as equivalent
to numbers of decibans, and the probabilities read ofieatal x-axis. If at least one taxon of a
closed causal group (all members surely of that groupdhes a high probability of being a
descendant, all of them are. One may note for Figuret®18a as the standard scientific minimum
of confidence is associated with the beginning of rapidrithgic rise in probabilities, while 0.99
signals a very tight rise. Neither of these two lintsstatistical confidence or credibility, the lower
for non-critical decisions, the higher for critical applioas or very complex problems, is really very
arbitrary, as is sometimes suggested.

THE BAYES FACTOR

Bayes factors (Kruschke 2011: 58) have been often used in phylegametysis to
determine model selection and species delimitation (Fah @04a1; Grummer et al. 2014; Li &
Drummond 2012; Suchard et al. 2002; Sullivan & Joyce 2005; Ward 2008usé&laf Bayes factors
in the present paper is simplified but, as measures oftidineaf macroevolutionary transformation,
Bayes factors are powerful in explaining monophyly.

The Bayes factor is a measure of which species best matsdthe ancestral species versus
the other species The Bayes factor (B.F.) is the ratio of the likelihoodshaf data for two models.
It is derived from Harold Jeffrey’'s (1961) concept of relatbetting odds (McGrayne 2011: 116).
Thus, B.F. = Pr(D|V) / Pr(D|M), or, the probability of the data given model 1 divided by the
probability of the data given model 2. This is the likelihoato. (Note: This is an odds ratio
because a probability would have the both of the differenbgtmbties of both models in the
denominator, and the fraction would not rise above 1.0.) i§h#itmeasures the change in the odds in
favor of the hypothesis when going from the prior to the piost@d_avine & Schervish 1999). For
anyone hypothesis, if the prior is 0.50, the Bayes factor is Birtige posterior probability. Fdwo
hypotheses, if the prior is 0.50, then the ratio of the pasterior probabilities is the Bayes factor
(i.e., the same as the likelihood ratio) (Kass & Rafi€95). The Bayes factor is somewhat better
than standard hypothesis testing because the latter cprowitie an evaluation of information in
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favor of the null, just a way to see if it can beifadd, while Bayes factor analysis can evaluate both
the hypothesis and the alternative.

Deciban analysis is the same as sequential Bayes analysi$ isusimpler. The Bayes
factor as used here measures probabilistically the cdnypathesis that species 1 is ancestral to all
immediate descendants as evaluated by sequential Bagbsis. This is done directly (with a
spreadsheet using the results of one Bayes formula anatysfse grior for another, see online
spreadsheets) or more coarsely by using decibans (see Tabrhis is done against the alternative
hypothesis that some other species is ancestor (as Bt is, the chance of species 1 generating
species 2, 3, ...n, versus the chance of species 2y §enerating species 1 and the rest.

According to Jeffries (1961), a Bayes factor (odds rati@vor) for one hypothesis against a
null hypothesis may be evaluated thus:

Table 2. Table for interpreting Bayes factors aditg to Jeffries (1961). Bayes factors in the textéeafl
the “:1” indication but remain ratios.

Bayes factor Value Probability Deciban equivalent
1:1-3:1 trivial 0-0.76 0-5dB

3:1-10:1 substantial 0.76-0.91 5-10 dB
10:1-100:1 strong 0.91-0.99 10-20 dB

more than 100:1 decisive more than 0.99 more than 20 dB

Kass and Raftery (1995) also provide significance chartB.fer expressed to base jpgnd
log., which are scales suitable for certain purposes, but ghiger eliminates unnecessary
mathematical burdens for the classical systematist raaiger To derive a Bayes factor against an
alternative hypothesis, the likelihood of the first hypothesist lnesdivided by that of the second.
We first determine the odds ratio for each of the two prdibebj a:b and c:d, which is (a/c)/(b/d) =
ad/bc. Here, c and d are commonly the same (i.e., dr)example, we may have two hypotheses, A
of 0.99 or 20 dB, and B of 0.61 or 2 dB. The odds ratio is 106:1/, or 67, which may be taken as
the Bayes factor. Approximate odds ratios for various ipesiind negative deciban levels are given
in Table 1. Table 2 allows an interpretation of Bayes fagtoterms of probabilities and decibans.

GRANGER CAUSALITY AND BAYES FACTORS

Causal connections are determined by predictability as vileas correlation. As discussed
by Sugiharra et al. (2012), Berkeley (1710, numbered paragraphs02®4, and 65) made the
observation that simple correlation in time or spaasoisassurance of a causal connection between
one thing and another. This is mainly because there mayhirel éhing affecting both, and both will
change following a causal connection between the third tmdghee other two. There may even be a
lag time that confounds direct detection of that third daelament. The solution is apparently
“Granger causality” (Granger 1969), which promotes predictabiather than correlation for
detecting causality. An element is said to “Granger &€aanother element if the predictability of
that second element declines when the first element is rehiow@ the model, all else being the
same (Sugiharra et al. 2012). Information about a causad¢neset must be independent of other
elements associated with some particular process-basedl mode

Predictability is essential in determining monophyly Speciation may be interpreted as an
ecological time series, thus the causal connections oftancEscendant relationships may be tested
using Granger causality. The assumption used in the pregmntipdhat for any one, two, or more
closely related species all with advanced traits, tsbaild be or should have been another with
more generalized traits. The null model for the cenfngbothesis (that species 1—the most



Zander: Classical determination of monophyly, concepts 19

generalized species—is the putative ancestral taxonjpisstme other species in the group is the
basal ancestor of the group. We can reject the nsiflaties 1 in the group (the causative ancestor),
when eliminated, results in very poor predictability of ahmedescendant relationships among the
remaining taxa in the group. Poor predictability wouldiromediately evident by there being no
strong polarization of support towards one of the other spehgesis, low Bayes factors. We do not
eliminate the putative progenitor completely from the null mdoie instead calculate the chance of
each of the other species being progenitor of the grouguclf a chance is far lower than that of the
putative progenitor, and prediction (here actually retrodictions®ral evolutionary transformation)

is much lessened, we can say the “Granger cause” of thet@mdescendant relationships in the
group is species 1, the putative progenitor.

IMPLIED RELIABLE CONFIDENCE INTERVAL (IRCI)

When many models are tested together there may be supporétween them [RCI tells
you if you have enough data on transformation directionsatcerany decision at all. Suppose tyou
are examining serial species transformation involving omeiep and a number of other species
(1>2, 1>3, 1>4, etc.), and the data on all species transfiams support to some extent the same
decision that 1>rest. This multiplication of evidence friwm or more data sets can be reflected in
increased probability that 1>rest. For this the ImpRatiable Credible Interval (IRCI) formula can
be used. The IRCI was used by Zander (2006) to evaluate émeeclof at least one of several
concatenated cladogram branches of moderate credibility suppog correct. It uses the fact that
there are more than one sources of at least some suppthis case, even 0.10 probability of 1>2 is
some support that 1>rest, because if one hypothesis is lirepeeies transformation directions are
true in this closed group.

Unlike Bayes factor analysis, nesting is not necessacyg $om any set of probabilities of any
process, the more processes involved the greater the cleo@ne is correct. This is a kind of
“existence” estimation when probabilities of events aramvidually decisive.

For the IRCI formula, because calculating positive supigodifficult, calculating negative
support and then subtracting from one is easier. The formddasisally 1 minus the multiplied
chances that each element is not true (“not true” meamagninus the probability it is true). This is
not the chance of one particular transformation betweersp&oies being correct, but the chance that
a sufficient number of hypotheses each of less thamp&tie probability will support the idea that at
least one of them is correct.

If at least one of the models of macroevolutionary transdtiom is correct (say, 1>2), then
the others (1>3, 1>4, etc.) must be because the modelsatased causal pool. The closed causal
pool for Zander’'s (2006) cladogram analysis was a serieorafatenated cladogram internodes,
where if one internode is correct then the taxa beyond the seeiéadeed in a clade of their own.
Here the closed causal pool is a set delimited by theidedhat they are all related and one of them
is a direct or indirect basal ancestral species forlaldoes not particularly increase the odds that a
particular species is ancestral, but does ensure that ¢héeipr is decidable. If the problem is
decidable, then the species with the least probable ch&teeng ancestral are well established as
descendants, and the two most likely are the only candidfates. Bayes factor for those two most
likely candidates exceeds 3.1, then the most likely specigsli supported as ancestor.

The IRCI is only used when no single Bayesian posterior piiilgaamong the results of
sequential Bayes’ analysis is adequate for a decisMote that the IRCI deals with probabilities
(chance that the hypothesis is correct) not with likelilsogchance that the data are correct).
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Probabilities calculated from different information do netessarily have to add to 100 percent, but
the closed pool ensures they are nested.

Probabilities can be confusing.When used as clues, any probability higher than 0.50 can be
added when converted to a deciban. Thus, in sequential Bagéssis, any probability more than
0.50 (more than zero dB) contributes to total clue deciliangyrobabilities less than 0.50 (less than
zero dB) reduce the confidence in total clue decibandteméfore in credibility that one species is
direct or indirect ancestor of all in the closed cagsalip.

For IRCI, on the other hand, any probability greater thao eentributes to total confidence
that the question of which species is ancestral is dblgd This is because total polarization of clues
in the closed causal group contributes to focusing on one orspeoies as true candidates.
Sometimes one species can be singled out to be well suppsréacestral species.

Consider, for example, the contrived situation of specidgdugh E all in one group with A
the fairly obvious ancestral species. What is the esagport for A being the ancestral species?
Each species has a probability based on various dati ithétte direct or indirect ancestral species of
the group. An IRCI for the probabilities 0.90, 0.25, 0.20, 0.10, wd®he species A through E
series gives 0.95 IRCI, as in IRCI formula (1):

(1-((1-0.90) x (1 -0.25) x (1 -0.20) x (1 - 0.10) x (11))).= 0.95 1)

and Bayes factor of 3.6 (that is, 0.90 divided by 0.25), whictubstantial for species A being the
direct ancestral species. This is true even when it miatelsave the full 0.95 initial probability based
on decibans alone. Note, again, that these probabiltie®tdhave to add to 1.00 because somewhat
different data is used to calculate each probability.

CONTINUED IN PART 3, THE ANALYSIS

SUPPLEMENTARY MATERIAL
Spreadsheets for calculating Bayes sequential anatleithans, and IRCI are available at
<http://www.mobot.org/plantscience/resbot/evsy/sprsh>
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